
ENGL-GA.1972-001 Introduction to Programming: Python for Humanists
Professor David Hoover (English) and Deena Engel (Computer Science)

New York University, Fall 2015

1	

	

Course description:

This course introduces humanities students to the fundamentals of computer programming as
students design, write, and debug computer programs using the programing language Python. No
knowledge of programming is assumed. The approach in this course is to focus on text and
textual manipulation while building useful applications in a variety of disciplines.

Overview:

In the first unit of the course, students will study the fundamentals of computer programming
using Python. The course would begin by tapping into the familiarity of Humanities students
with language – along with its textual forms and linguistic structures – by discussions and an
opening assignment that draws analogies between programming and natural languages. Topics in
semantics, grammar, and syntax will be discussed to help Humanities students understand the
basics of writing computer programs. Topics in Python will include data types; selection
statements; iteration; functions and modules; lists and dictionaries; and working with text and
data files, among others. These topics will be taught in a traditional classroom/lecture discussion
format, followed by weekly programming assignments in hands-on lab sessions.

The second unit of the course will be project-based as students hone their programming skills to
build useful programming applications to support scholarly research in the Humanities, such as
textual analysis tools to examine word frequency and collocation; programs to “scrape” data
from the web and prepare data and text files for further research and analysis; and related topics.

Case studies of programming projects in the Humanities will be presented in class and evaluated
from both scholarly and technical perspectives.

Grading:

Graded work will consist of the following:

• 10 homework assignments at 7% each. (70%)

• Final project (15%)

Each student will design and implement a textual analysis research project using Python
to manage a selected corpus and produce original and meaningful research results of
interest to the student’s discipline. Students in literature and language, history, and other
fields have access to a wide variety of digitized documents and textual resources that are
appropriate for analysis using the skills and methods they will have learned in this course.
Starting in Week 6, the students will be working with texts that are relevant to their fields
of study, so that by Week 11 they will have both a suite of programs and a corpus of texts
to use as a foundation for the project. The project will address a significant research
question, such as studies in authorship attribution; stylometry; gender studies; genre; and
other areas of inquiry that employ textual analysis and are relevant to the student’s
content field. The projects will be discussed in class and class time will be spent working

ENGL-GA.1972-001 Introduction to Programming: Python for Humanists
Professor David Hoover (English) and Deena Engel (Computer Science)

New York University, Fall 2015

2	

	

with the students on both the programming and the research aspects during class weeks
11, 12, and 13 (see below). Like many of the weekly assignments, the central pedagogical
goal of the final project is to push students to more serious consideration of how the
nature of the problem should guide the construction of projects and the writing of the
programs that support their research. This approach insures that students focus early and
often on designing projects that are not just computationally accurate but are also
persuasive and satisfying to the contemporary humanities scholar.

• Final exam. (15%)

Readings:

Weekly readings will be assigned from a central course textbook, Think Python by Allen B.
Downey (O’Reilly Media 2012) as well as from scholarly books and articles in the Digital
Humanities.

Weekly Class Plan:

Week Course Content

1 Definition of a programming language; types of programming languages;
comparisons between programming languages and natural languages; and an
introduction to working in Python.
Reading (Python): Think Python Chapter 1

Reading (Theory): Historical Background
Hockey, Susan. 2004. “The History of Humanities Computing.” In Susan
Schreibman, Ray Siemans, and John Unsworth, eds. A	
 Companion	
 to	
 Digital	

Humanities. Oxford: Blackwell.

2 Introduction to manipulating text in Python.
Introduction to working with characters and text (“strings”) as well as textual user
input and string manipulation. Relevant string methods in Python are introduced.
Reading (Python): Think Python Chapter 2, Chapter 3 (Pages 23-25), Chapter 8
(Pages 85-86)

Reading (Theory): General Introduction
Hoover, David L. 2013. “Text Analysis.” In Ken Price and Ray Siemens, eds.
Literary	
 Studies	
 in	
 the	
 Digital	
 Age:	
 An	
 Evolving	
 Anthology. New York: MLA.

Craig, Hugh. 2004. “Stylistic Analysis and Authorship Studies.” In Susan
Schreibman, Ray Siemans, and John Unsworth, eds. A	
 Companion	
 to	
 Digital	

Humanities. Oxford: Blackwell.

ENGL-GA.1972-001 Introduction to Programming: Python for Humanists
Professor David Hoover (English) and Deena Engel (Computer Science)

New York University, Fall 2015

3	

	

3 Selection statements and additional datatypes
Students will study selection statements (“if” and “if/else” structures), and additional
data types (integers, floating point numbers, and Boolean values) will be introduced,
along with the ASCII chart. Students continue to explore the Python API and become
familiar with built-in string operations for string manipulation (e.g. capitalization,
identifying characters within a string, formatting strings, etc.).
Reading (Python): Think Python Chapter 5 (Pages 49-52), Chapter 8 (Pages 90-92)

Reading (Theory): Seminal Early Work
Burrows, John F. 1992. “Not Unless You Ask Nicely: The Interpretative Nexus
Between Analysis and Information.” Literary	
 and	
 Linguistic	
 Computing	
 7: 91-109.

4 Iteration (repetition) structures (“for” and “while” loops)
Students implement iteration to work with text.
Reading (Python): Think Python Chapter 7 and Chapter 8 (Pages 86-90)

Reading (Theory): Provocative Recent Challenge to DH, Involving Alliteration
Fish, Stanley. 2012. “Mind Your P’s and B’s: The Digital Humanities and
Interpretation.” The	
 New	
 York	
 Times, January 23.

5 Working with Python’s list data structure.
Reading (Python): Think Python Chapter 10

Reading (Theory): Provocative Recent Approach
Ramsay, Stephen. 2011. “An Algorithmic Criticism.” In Reading	
 Machines:	
 Toward	

an	
 Algorithmic	
 Criticism. Champaign, IL: University of Illinois Press: 1-17.

6 File manipulation:
Students write Python scripts to open text files and process the data. Students will be
asked to download out-of-copyright files containing historical documents and literary
texts from both publically available archives (e.g. http://www.gutenberg.org/) and
online archives available through the Bobst library. Students are encouraged to select
texts and build a corpus consisting of works that are relevant to each student’s field of
study for this and future assignments. Students will be introduced to additional
character sets beyond ASCII.
Reading (Python): Think Python Chapter 14 (pages 160-163)

Reading (Theory): Classic Study with Significant Disciplinary Interest

Jordan, Ellen, Hugh Craig, and Alexis Antonia. 2006. “The Brontë Sisters and the
Christian Remembrancer: A Pilot Study in the Use of the ‘Burrows Method’ to
Identify the Authorship of Unsigned Articles in the Nineteenth-Century Periodical
Press.” Victorian	
 Periodicals	
 Review	
 39: 21-45

Dridan, Rebecca, and Stephan Oepen. 2012. “Tokenization: Returning to a Long
Solved Problem: A Survey, Contrastive Experiment, Recommendations, and
Toolkit.” Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: 378-82.

ENGL-GA.1972-001 Introduction to Programming: Python for Humanists
Professor David Hoover (English) and Deena Engel (Computer Science)

New York University, Fall 2015

4	

	

7 Functions and modules:
Students learn how to modularize code (by writing functions) and to build Python
modules.
Reading (Python): Think Python Chapters 3 (pages 25-32) and 6 (Pages 61-65)

Reading (Theory): Influential Recent Work
Jockers, Matthew L. 2013. “Style.” In Macroanalysis:	
 Digital	
 Methods	
 and	
 Literary	

History. Champaign, IL: University of Illinois Press: 63-104.

8 Files and directories:
Students learn to use Python to programmatically read the contents of a file directory
and process all of the appropriate files. Students will also begin scraping data from
the web.
Reading (Python): Think Python Chapter 14 (pages 161-162, 169)

Reading (Theory): Influential Recent Work
Jockers, Matthew L. 2013. “Nationality.” In Macroanalysis:	
 Digital	
 Methods	
 and	

Literary	
 History. Champaign, IL: University of Illinois Press: 105-17.

9 Python dictionaries
Students will be introduced to the Python dictionary data structure.
Reading (Python): Think Python Chapter 11

Reading (Theory): A Respected Practitioner Reflects
Burrows, John F. 2010. “Never Say Always Again: Reflections on the Numbers
Game.” In Willard McCarty, ed. Text	
 and	
 Genre	
 in	
 Reconstruction:	
 Effects	
 of	

Digitalization	
 on	
 Ideas,	
 Behaviours,	
 Products	
 and	
 Institutions.	
 Open Book
Publishers.

10 Introduction to graphics using Python
Reading (Python): Python Mode for Processing (Tutorial):
http://py.processing.org/tutorials/

Reading (Theory): An Influential and Controversial Approach with Interesting
Visualization Issues
Moretti, Franco. 2003. “Graphs, Maps, Trees: Abstract Models for Literary History–
1.” New	
 Left	
 Review	
 24: 67-93.

ENGL-GA.1972-001 Introduction to Programming: Python for Humanists
Professor David Hoover (English) and Deena Engel (Computer Science)

New York University, Fall 2015

5	

	

11,12,13 Textual Analysis Research Projects
Following please find four sample projects:

1. A fully functioning, well-developed Python tokenizer with a clear and user-
friendly interface and robust error handling. This project could take several forms.
The tokenizer might be developed for a particular corpus of texts, with an emphasis
on insuring that it correctly handles any problematic characteristics of that corpus.
Alternatively the tokenizer might be a generalized one that is then tested on several
varied corpora (in this case the project should discuss areas where modifications
would be needed to give good results). Another version of this project would
compare the results of the tokenizer with a series of existing tokenizers on one or
more corpora. In all cases the project would include both the tokenizer itself and a
discussion of it.

2. A fully functioning, well-developed Python Style-Impersonator with a clear and
user-friendly interface and robust error handling. This project would use a Markov
model to produce substantial passages of text that mimic as closely as possible the
style of a text of the user’s choice. The program should produce text that sounds as
much as possible like the original. It should also allow for the selection of parameters
(such as the order of the model and the size of the output), so that the user can
examine how those parameters affect the output.

3. A study of speeches, using original Python programs. These could be political
speeches (primary or general election speeches, nominating or acceptance speeches,
presidential inaugural addresses, State of the Union addresses, speeches from
congressional sessions), public addresses of various kinds, sermons, or any kind of
speeches in which the student is interested. The programs could either do a complete
analysis, based on textual features of the student’s choosing, or could do the
preliminary work of collecting and counting features and preparing output
appropriate for various other statistical programs or existing DH tools. (In this kind of
project, there might be a little less focus on the nature of the programs themselves
and more on producing results of interest to the student’s discipline.)

4. A study of Henry James’s letters that examines the question of how/whether
James’s adoption of dictation for many of his letters beginning in 1897 changed the
style of those letters. This project would use original Python programs to analyze any
textual features of the student’s choosing, and could, as in #3 either produce
completed results or output that would be processed by other DH tools.

14 Final Exam Review and Student Presentations

 Final Exam (to be held during the University examinations period)

